Chapter 2

Relativistic Kinematics

In this chapter, the framework of Einstein’s special theory of relativity is pre-
sented. Transformations that render the spacetime interval —c?t? + 22 +y2 + 22
unchanged define the category of physical theories that are Lorentz invariant.
Further relativistic invariants, used to transform particle and photon distribu-
tions, are derived. The kinetic theory of reaction rates and secondary spectra
occupies the second half of this chapter.

2.1 Lorentz Transformation Equations

Consider two coordinate systems K and K’ in uniform relative motion, defining
an inertial reference system. The reference frames are aligned along the  and
2" axes, with frame K’ moving at speed v = (¢ in the positive Z direction with
respect to frame K (Fig. 2.1). Assume that a ruler and a clock are used to
measure location and time in each frame. According to the postulates of special
relativity, the laws of physics are the same in inertial reference systems, and the
speed of light ¢ is the same in both frames. To satisfy these conditions requires
that the interval

—PP R+ 4R = AP Py 422 =0 (2.1)
Assuming homogeneity and isotropy of space, one can easily show that the
Lorentz transformation equations are the simplest linear equations satisfying

eq. (2.1) that connect location Z at time ¢ measured in K with location Z' at
time ¢’ measured in K'. They are

t' = T(t—pBz/c)

¥ = T(x—Bet), (2.2)
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Figure 2.1: Bulk frame K’ moving with speed v = f¢ in the % direction with
respect to frame K. Direction of a photon or relativistic particle with dimen-
sionless energy € makes an angle 6 with respect to the & axis. The azimuth ¢ is
the angle between the projection of this vector on the z-y plane and the y axis,
and similarly for primed quantities in the K’ frame.

where I' = 1/4/1 — 2. The reverse transformations are

= TD(t' + B2 /c)

!

= Zl

= T(z' + Bet') . (2.3)
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The set of four numbers z# = (ct,¥) = (ct,x,y, z) defines a spacetime event.
Events in two inertial reference frames are related by eqs. (2.2) and (2.3).

Suppose the length of an object is measured in frame K. At the same
time ¢, one measures length Az = x5 — 1 of an object in motion. In the
K' frame, z, = T'(z2 — fet) and 2] = T'(xzy — fet), from eq. (2.2), so that
Az’ =z, — 2} = TAxz. Hence Az = Az'/T, so that

_

d
TET

(2.4)
The length of a moving object measured along its direction of motion is shorter
than its length as measured in the proper frame of the object. This is the
phenomenon of length contraction.
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Now consider a clock at rest in the K’ coordinate system, so x' remains
constant in K'. The relationship between the time measured in the stationary
frame K to that in the comoving frame K’ is, from eq. (2.3), simply At =
to —t1 =T(th + pz'[e) = T(t] + Ba'/c) = T(t —t}) = At', so that

dt =Tdt" . (2.5)

This is the phenomenon of time dilation.

In the general case, the K' frame does not travel along the Z axis. The
Lorentz transformation equations for the coordinate r|| along the direction of
motion and the coordinate r| transverse to the direction of motion can then be
written as

t'=T(t~vry/c), r|=T(rp—vt), and r'| =7y . (2.6)

Here # = arccos p is the angle between the direction of motion of the K’ system
and the 2 axis of frame K, so that rj = (¢-7)/v, 7. = /1 —p?|f], and
vr =¥ -7 = vrp. The reverse transformation equations are

t =0 +ovr|/c), rp=T(rj+ot"), and rL =7 . (2.7)

The invariance of the interval, eq. (2.1), also implies that the spacetime
interval

ds? = —c2dt? + daz? + dy?® + d2? = —=c2dt”? + dz”? + dy'? + dz"*
is invariant. Consider a particle at rest in the origin of K'. Therefore

dz? + dy? + dz?

2 — 2 1— — 2 1— 2.2 .
dt"” = dt*( 2 dP ) = dt*(1 —v*/c?)
Thus the proper time
dt dt
dt' == — = — 2.
F=" (28)

as measured in the rest frame of a particle is invariant because, in this case, the
particle Lorentz factor v equals the bulk Lorentz factor I'. Hence dt = ~dt', in
agreement with the time dilation formula, eq. (2.5).

2.2 Four Vectors and Momentum

The four-vector spacetime coordinate z* = (ct,Z) = (2°, 2!, 22, 23) transforms

according to the Lorentz transformations, eqs. (2.2) and (2.3). A four vector is
defined as a set of four quantities that transform according to eq. (2.9). Thus

2% = T(2° - pzh)

' = T(z! - pY)

? = =

o = 2. (2.9)
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Four vectors can be constructed from the spacetime four vector and invari-
ants that are unchanged by Lorentz transformations. The four-vector momen-

tum
n

dx - .
pt = —mcg = mey(1, Bpar) = me(y, Ppar), (2.10)
where B_;,M = dZ/dt and Pper = EW% and we use the invariant ds = —cdt’ =
—cdt/v, eq. (2.8) associated with the proper time of a particle moving with
par

Lorentz factor v = 1/,/1 — 82,, in the K frame. The time component of eq.

(2.10) is equal to E/c, where the total particle energy
E =ymc* .

The quantity m is the invariant particle rest mass.
Because eq. (2.10) is a four vector, it transforms according to eq. (2.9). Thus
one obtains the Lorentz transformation equations

7' = T(y=Bp:) =Tv(1 = BBpare)

e = Dpe—57), oty Bhure = YT (Bpare — B)

P; = Dy

. = p:, (2.11)

for particle Lorentz factor and dimensionless momentum, with the reverse trans-
formation obtained by letting 8 — —f and switching primed and unprimed
quantities. These equations can be derived, in analogy with the Lorentz trans-

formation equations for the spacetime event, from the invariance of —(me)? =

—(E/e)* + (mep)* = —(me)*(v* — Bary?)-

Because the z-component of dimensionless momentum can be written as
Dz = VBpar,w = VBparit, Where 8 = arccos i1 is the angle between the direction
between the particle momentum and the z axis,

v =Ty(1 = BBparns) (2.12)
and
ﬂ;lmr'y’,ul =Iv(Bparp — B) - (2.13)
The ratio of eqs. (2.13) and (2.12) is

Bparit — B8
1- ﬂparﬂlu -

For massless photons or highly relativistic particles with 3,4, — 1 and v > 1,
we let v = €. Thus

B! = (2.14)

€ = Te(l-pBu), (2.15)
§oo= 1“__5 , and (2.16)

o = ¢, (2.17)
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now writing the energy in terms of cosine angle y and azimuth angle ¢ (Fig 2.1).
The reverse transformation equations for photons and relativistic particles are

e = T+ py), (2.18)
p+ B

12 TBN’ 5 and (219)

6 = ¢ . (2.20)

Eqgs. (2.15) — (2.20) can be derived for photons by considering the photon four-
vector momentum k* = (ii/c)(w, k), with € = hv/meoc® = hw/m.c2.

If a photon in the bulk comoving frame is emitted at right angles to the
direction of motion, then ¢’ = 7/2 and u' = 0. The cosine angle of the photon
in frame K is p = 3, from eq. (2.19). For highly relativistic bulk speeds, I' > 1
and 3~ 1—(1/2I'%) ~ 1 — (6*/2). All photons emitted in the forward direction
in K’ are therefore beamed into a narrow range of angles 2 1/T" in K. This
illustrates the phenomenon of relativistic beaming.

2.3 Relativistic Doppler Factor

Eq. (2.15) shows that the photon energy in frame K is related to the photon
energy in frame K’ according to the relation

€ _
L) (2.21)
where dp is the Doppler factor. In the limit that of large bulk Lorentz factors
and small observing angles along the line ofsight,
I>1, 01 2r
o — —_— 2.22
b 1410262 (2:22)
It is useful to derive this factor by considering an observer receiving photons
emitted at an angle # with respect to the direction of motion of frame K’ in
the stationary frame K (Fig. 2.2). During time At, as measured in stationary
frame K, the bulk system moves a distance

Az = BcAt = BTcAt

where the last expression relates the change in distance to the comoving time
element using the time dilation formula, eq. (2.5).
A light pulse emitted at stationary frame time ¢ and location x is received

at observer time p 0
x COS
o =t 4 - — : (2.23)
¢ ¢
where d is the distance of the observer from the origin of stationary frame K.
At a later time ¢t + At, a second pulse of light is emitted which is received by

the observer at time

1 At = g4 A4 & [EHAT) oS (2.24)
C

Cc
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Figure 2.2: Geometry of the Doppler Effect.

Subtracting eq. (2.23) from eq. (2.24), and taking the limit of differential quan-
tities gives
dz dt’

dt”’ = — (1 - ) =Tadt'(1 - Bu) = — . 2.2
(1= Beost) = Tar (1= i) = 5 (225
Because € = hv/mc* and v oc 1/At,
dt’ €
b 2.2
Jioh = g (2.26)

and € =¢€/dp, eq. (2.15.

2.4 Three Useful Invariants

The invariance of the four-volume dtdV = dtd>Z is demonstrated. Without loss
of generality, align the coordinate axes along the direction of relative motion,
as in Fig. 2.1. The quantity

dtdV = didedydz — J<Z, : 5, j,) dt'de’ dy' ' (2.27)

where the Jacobian of the transformation, from eq. (2.3), is

ot ot ot ot
ot’ ox' oy’ oz’
oz Oz Oz Oz
J t v y =z 8’ 9z’ By 97
— |8y 9y OBy Oy | —
ot’ oz’ oy’ 0z!
0z 0z 0z 0z
ot’ ox' oy’ oz’




2.5. INVARIANCE OF U(e, ) /3, I./€3, AND J(e, )/ 7

r Blc 0
FBC F 0 0 _ 2 . 2\
0 0 1 0 =T*(1-p5%)=1. (2.28)
0 0 0 1
Thus
dvVdt = dV'dt' = inv . (2.29)

We now examine the transformation quantities of the momentum volume

element .

0
&p = dpldp,dp, = | 8? |dpdp,dp- , (2.30)
T
and show that the phase-space element d*p/E is an invariant, noting that the
perpendicular momentum components dp, and dp. are unchanged by a boost

along the & axis. From eqs. (2.11) and (2.12),

op, 2al L(y=Bp) _+ _ E
(9px| B |(9px| S S 7 (2.31)
Note that v = \/1+p* = (/1 +p2 +p] +p?, so that Op;/0y = ~v/p; and

Op/0y = v/p. Thus

&y &y
E FE

=inv, (2.32)

and
>y B p2dpdQ)
E E
is invariant, with the final expression applying to photons and relativistic par-
ticles.

Finally, we establish the invariance of the phase-space volume dV = d>Zd>p.
Consider particles or photons distributed in a small physical volume element
A3z" and momentum volume element A3p'. From eq. (2.29), d*% = |dt' /dt|d>*F =
d*¥ /T, which is just an expression of the length contraction formula, eq. (2.4).
For a distribution of particles with a small spread of momenta in the K’ frame,
|p'| = B'y" < 1. Using the inverse transformation p, = I'(p, + 7') from eq.
(2.11),

— eded() | (2.33)

Ope _ O (P, + B7')] 0y’
Opt, sy Iy
because 0v'/0p,, = pl,/T — 0 under the stated conditions. Thus the phase

space volume is an invariant. The invariance of d} also follows by noting that
dt/E is the ratio of parallel 4-vectors [1].

=T+ BI(

) =T,

2.5 Invariance of u(e,Q)/e, I./€*, and j(e, Q)/€>

The elementary invariants are the invariant 4-volume d*Z#dt = dV dt, the invari-
ant phase-space element d®p/E, and the invariant phase volume dV = d*Zd>p.
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Because the number N of particles or photons is invariant,

dN 1 dN 1 dN 1 &

u(e, )
R — — — =
dv  p? dVdpdQ €2 dVdedQ meqc2e3 dVded)

1
€ mec?

. (2.34)

where the latter three expressions apply to photons and relativistic particles.
Here we also introduce the quantity £ to represent the total energy contained in a
distribution of particles or photons, as distinct from the E or e, which represents
energy and dimenensionless energy, respectively, in a single particle or photon.
The specific spectral energy density u(e, ) is defined so that u(e, Q)dV ded(? is
the differential energy d€ in particles or photons in differential volume dV with
energy between e and € + de that are directed into the solid angle element df2
in the direction of Q. From eq. (2.34), we see that

u(e, Q u' (e, .
(63 ) = (€,3 ) =inv . (2.35)

A bundle of photons or relativistic particles directed into a differential solid
angle interval d) sweep out a volume element dV = cdtdA as they pass through
a differential area element dA oriented along the direction 2. Thus

_de 1 dE 1)
T AVded ~ ¢ dAdidedQ ~ ¢

u(e, )

Hence, u(e, Q)/e® and I.(Q)/€® are invariants. The function I () is the inten-
sity, and is considered in more detail in a later chapter.
The function

dN 1 &

1.
2 dVdided) e’

is invariant, noting that the last two expressions apply to photons and relativis-
tic particles. The function j(e, Q) is the emissivity. A formalism to calculate
emissivities is presented later in this chapter.

2.6 Relations between Transformed Quantities

Let N (e, )ded() represent the differential number of photons or relativistic par-
ticles with energy between e and € + de that are directed into differential solid
angle interval d) in the direction Q. Because the total number of photons or
particles is invariant, so also is the quantity

dN  N(eQ)
ededQ) € ’

(2.37)

using eq. (2.33). Thus N (e, Q) = opN'(¢', '), noting the definition, eq. (2.21),
of the Doppler factor.
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Figure 2.3: Sketch used to derive reaction rate between interacting particles or
photons with stationary frame densities n; and ns.

Consider the beaming pattern of radiation for an observer in frame K from
a source that radiates isotropically in K'. Eq. (2.37) becomes

N'(e/op) _ 1 N'[Te(l = Bu)]

N(e, @) = op—p— = T(1— Bp) A

. (2.38)

Furthermore, suppose that the spectrum of photons or particles is monochro-
matic in the comoving frame. In this case, N'(¢',Q') = Nodp (€' — €f)/4m, and
the total photon or particle energy in the comoving frame, in units of the elec-
tron rest mass, is &) = Noej. The differential photon spectrum in the stationary
frame is therefore N (e, Q) = dpNod(e/dp — €})/4m = 63 Nod(e — dpep)/4m, so
that the total energy in frame K is

[e%e} Nol 1
5:7{@/0 deeN(e,Q):Teo/lduéf’) - &' . (2.39)

The Lorentz boost simply adds a factor ' to the total energy content, which is
obvious by noting the symmetry of the transformation equation ¢ = Te’(1+Su')
with respect to p'. But this example illustrates how the total energy can be
calculated when dealing with more complicated angular distribuions of particles
and photons.

2.7 Relativistic Reaction Rate

The relativistic reaction (or scattering) rate ns. = dN/dVdt is defined as the
number of collisions per unit volume per unit time between particle species “1”
and “2” with masses my and ms, respectively. Because the number of collisions
dN and the product dVdt are separately invariant quantities, the ratio ng. is
also an invariant quantity.

Let the densities of species 1 and 2 in system K be denoted by n; and ns,
respectively, as shown in Fig. 2.3. Due to length contraction, the densities in
the proper system in which the particles are at rest are given by n; = y;n?,
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i = 1,2, where v; = (1 — 3?)"'/? are the Lorentz factors of particles in K and
we consider for the moment particles of type i that all move with the same
Lorentz factor. Note that the density of particles is least in the proper frame.
Transforming to the rest system of particle species 2 implies that the reaction
rate in that system is

Nge = cBronin} (2.40)

where ¢f3, is the relative speed of particles of type 1 in the rest system of particles
of type 2, and o = o(7,) is the scattering cross section. The quantity o(7y,) is
a function of v, = (1 — #2)~ /2, which is simply the relative Lorentz factor of a
particle of one type in the rest system of the other particle type, and as defined is
obviously invariant. From our preceding considerations, v, = pf' - pb /(mims) =
Y12 (1 — B} . B;), where p!' is the four-momentum of particles of type i (eq.

[2.10]). Thus
B'r': [(p p) _m1m2]1/2 . (241)

(p'-p?)?
Note that 3, = 1 if either (or both) species are photons.

Let n} be the density of species 1 as seen in the rest system of species 2.
Therefore n} = v,.n? = v,n1/v and nY = na/7y2, implying fise = cBro(v,)(1 —
31 - B})nlng. This expression applies to two mono-energetic particle species
each traveling in specific directions. In the general case, particles will have
a distribution of directions and energies, so that it is necessary to integrate
over the various directions and energies to calculate the total reaction rate. If
the particle distributions are self-interacting, then the reaction rate must be
multiplied by a factor of 1/2 to correct for double counting. Thus the reaction
rate for two interacting distributions of particles is given by

Fise = m //6 (1= By - Bo)o (v )dnadna (2.42)
[4, 5], where §;2 = 1 for self-interacting particle distributions and 4,2 = 0 for
interactions of different types of particles. Because of the invariance of 1., eq.
(2.42) equally gives the reaction rate in frame K, even though it was derived in
the proper frame of particle species 2. Eq. (2.42) is also valid for photon-particle
interactions with 3, — 1 and v, — y1€(1 — 81 cos ), and for photon-photon
interactions with v, — €1€2(1 — cosf12).
The differential spectral density

dn dn

== 24

so that dn = n(p)p?dpdQ and d? = dudp. The momentum of a particle or
photon of species i is denoted by p;. For particles, p; = (;7v;, whereas p; =
hv; /mec2 = ¢; for photons. The general expression for the reaction rate is
therefore given by

c o0
lge = Q 7 )
n ) %d 1 /0 dpy p7 ni(p1) X
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Figure 2.4: Angles in spherical geometry.

fdm / " dpa 12 na(s) Br(1 = BB cos)o(y) - (2.44)

The invariant energy defining the collision strength is the relative Lorentz factor
Yr = 7172(1 — B1 B2 costp), and ¢ is the angle between the directions of the
interacting particles or photons, given by

costh = gz + (1= i)'/ (1 = 3)"7? cos(d1 — ) (2.45)

(Fig. 2-4). .

Now consider the scattering rate Ng. of a particle traversing a photon field.
The distribution function for a single particle is n1(p1) = n16(p — p1)d(u1 —
1)8(¢1)/(4mp?), and eq. (2.44) implies

- 27 1 (o]
Noe(pr) = 222 = ¢ / d$ / (1= ) / de npn(e,2) o(7,) , (2.46)

ny

where ny,(€,Q) = dN/dVdedQ) is the photon distribution function and v, =
~ve(l — B1p) characterizes the invariant energy of the scattering event. For
photon-photon (y7) interactions of a photon with energy €; passing through
a gas of photons with energy €, f; — 1 and 7, — €, = ee;(1 — p). Thus
the interaction rate of a photon with energy €; passing through a background
photon field n(e, Q) is

N =c [ s / 11 dui=p) [ " dengn(e, ) o(er) (2.47)

2.8 Secondary Production Spectra

The calculation of secondary production spectra with momenta ps = (ps, s)
depends on knowledge of the differential cross section do(p1, 1, p2, Q2)/dpsdS2s.
In terms of differential densities, the results in the previous section imply the
number emissivity

dNy ¢ oo
dVdtdpsdQy 1+ 1 ?{d 1 /0 dpy n1(pr, Q1) x

g (pSa Qs)
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x % Q) /0 dps 12 (P2, Q2) By - (1 — Bufo cos 1)) 3;(;51 (2.48)

for the seondary production spectra.

The most common type of problem encountered in black-hole studies involve
scattering of photons by relativistic (p &~ v > 1) particles, for example, in
treatments of Compton scattering and photo-meson interactions. In this case,
eq. (2.48) can be written as

1s(Ps, Cbs) = c?gdﬂ/ de npp (€, 1) %
0

> dU(E,Q,’Y,men)
Qar 1- ar ar :Q ar) — 1 30  ° 2.4
e [ 7 (1= Bpar 0050) mgar (1, ) ) (249

If the particle distribution function 7npe,(7y, Qper) is assumed to be isotropic,

then npar (7, Qpar) = Npar(7) /4.
The emissivity for electron-photon scattering is given by the expression

J(es, Q) = Wisdﬂs — e Peging (g, ) = cesfdn/o de @x

% 0,7, Q,
X fdﬂe/ dy (1 = Becosp) ne(y,Qe) 7610(;’ MALY ; (2.50)
1 €. d)

where the subscript “e” refers to the electron distribution. The specific spectral
photon energy density u(e, Q) = mec?en,, (e, Q) and scattering cosine angle

cost) = pipre + /1 — p?/1 — i cos(¢ — de) , (2.51)

from eq. (2.45).
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